A mineral is a naturally occurring substance that is solid and inorganic representable by a chemical formula, usually abiogenic, and has an ordered atomic structure.

Select options This product has multiple variants. The options may be chosen on the product page

Galena

$19.00$400.00

Galena is the main ore of lead, used since ancient times. Because of its somewhat low melting point, it was easy to liberate by smelting. It typically forms in low-temperature sedimentary deposits.

In some deposits galena contains about 1–2% silver, a byproduct that far outweighs the main lead ore in revenue. Galena deposits often also contain significant amounts of silver as included silver sulfide mineral phases or as limited solid solution within the galena structure. These argentiferous galenas have long been the most important ore of silver.[citation needed]

Galena deposits are found worldwide in various environments. Noted deposits include those at Freiberg in Saxony; Cornwall, the Mendips in Somerset, Derbyshire, and Cumberland in England; the Madan, Rhodope Mountains in Bulgaria; the Sullivan Mine of British Columbia; Broken Hill and Mount Isa in Australia; and the ancient mines of Sardinia. Galena also occurs in North African countries and at Mount Hermon in Northern Israel. In the United States, it occurs most notably in the Mississippi Valley type deposits of the Lead Belt in southeastern Missouri, and in the Driftless Area of Illinois, Iowa and Wisconsin. The economic importance of galena to the early history of the Driftless Area was so great that one of the towns in the region was named Galena, Illinois.

Cubic galena with calcite from Jasper County, Missouri, USA; 5.1 cm × 3.2 cm × 2.8 cm (2.0 in × 1.3 in × 1.1 in)

Galena also was a major mineral of the zinc-lead mines of the tri-state district around Joplin in southwestern Missouri and the adjoining areas of Kansas and Oklahoma. Galena is also an important ore mineral in the silver mining regions of Colorado, Idaho, Utah and Montana. Of the latter, the Coeur d’Alene district of northern Idaho was most prominent.

Galena is the official state mineral of the U.S. states of Missouri and Wisconsin; the former mining communities of Galena, Kansas and Galena, Illinois take their names from deposits of this mineral.

Derbyshire in the UK was one of the main areas where galena was mined.

The largest documented crystal of galena is composite cubo-octahedra from the Great Laxey Mine, Isle of Man, measuring 25 cm × 25 cm × 25 cm (10 in × 10 in × 10 in).

Select options This product has multiple variants. The options may be chosen on the product page

Copper

$19.00$400.00

Copper is a chemical element with symbol Cu (from Latin: cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a reddish-orange color. Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.

Copper is one of the few metals that occur in nature in directly usable metallic form (native metals) as opposed to needing extraction from an ore. This led to very early human use, from c. 8000 BC. It was the first metal to be smelted from its ore, c. 5000 BC, the first metal to be cast into a shape in a mold, c. 4000 BC and the first metal to be purposefully alloyed with another metal, tin, to create bronze, c. 3500 BC.

In the Roman era, copper was principally mined on Cyprus, the origin of the name of the metal, from aes сyprium (metal of Cyprus), later corrupted to сuprum, from which the words copper (English), cuivre (French), cobre (Spanish), Koper (Dutch) and Kupfer (German) are all derived. The commonly encountered compounds are copper(II) salts, which often impart blue or green colors to such minerals as azurite, malachite, and turquoise, and have been used widely and historically as pigments. Copper used in buildings, usually for roofing, oxidizes to form a green verdigris (or patina). Copper is sometimes used in decorative art, both in its elemental metal form and in compounds as pigments. Copper compounds are used as bacteriostatic agents, fungicides, and wood preservatives.

Copper is essential to all living organisms as a trace dietary mineral because it is a key constituent of the respiratory enzyme complex cytochrome c oxidase. In molluscs and crustaceans, copper is a constituent of the blood pigment hemocyanin, replaced by the iron-complexed hemoglobin in fish and other vertebrates. In humans, copper is found mainly in the liver, muscle, and bone. The adult body contains between 1.4 and 2.1 mg of copper per kilogram of body weight.

Select options This product has multiple variants. The options may be chosen on the product page

GIA Laser Report Number

$19.00$400.00

1. Header of the Report – Who Actually Graded the Diamond?

The first detail to look for is the name of the issuing laboratory. The more well-known labs are GIA, AGS, EGL, IGI, and HRD but there are also plenty of other “specialty services” who issue reports too.

The more important question here is who uses these specialty services and why? You might have encountered the notoriously “cheap” diamond deals that come with obscure grading reports from “independent” appraisers or in-house gemologists.

The truth is, there are no deals here. These “cheap” diamonds are usually what they are; low quality diamonds that aren’t worth the fees of sending it to a proper lab for grading. Instead, unethical jewelers bank on the lax grading standards of “independent” appraisals and biased in-house reports to make low quality diamonds sound better on paper.

The bottom line is that you should only consider buying diamonds graded by GIA or AGS. The other labs have lenient standards and often over-grade diamonds for the benefit of the jeweler. For more information, you can refer to our article on the differences between gemological labs.

2. Report Number, Cutting Style And Measurements

The next detail you would notice is the report number, which is a unique series of digits for record keeping purposes. Most labs retain this number in their database in case you misplace your report and need a replacement. More importantly, this number also allows you to have a direct verification of the document via the gemological lab’s website.

Select options This product has multiple variants. The options may be chosen on the product page

GIA Laser Report Number

$19.00$400.00

1. Header of the Report – Who Actually Graded the Diamond?

The first detail to look for is the name of the issuing laboratory. The more well-known labs are GIA, AGS, EGL, IGI, and HRD but there are also plenty of other “specialty services” who issue reports too.

The more important question here is who uses these specialty services and why? You might have encountered the notoriously “cheap” diamond deals that come with obscure grading reports from “independent” appraisers or in-house gemologists.

The truth is, there are no deals here. These “cheap” diamonds are usually what they are; low quality diamonds that aren’t worth the fees of sending it to a proper lab for grading. Instead, unethical jewelers bank on the lax grading standards of “independent” appraisals and biased in-house reports to make low quality diamonds sound better on paper.

The bottom line is that you should only consider buying diamonds graded by GIA or AGS. The other labs have lenient standards and often over-grade diamonds for the benefit of the jeweler. For more information, you can refer to our article on the differences between gemological labs.

2. Report Number, Cutting Style And Measurements

The next detail you would notice is the report number, which is a unique series of digits for record keeping purposes. Most labs retain this number in their database in case you misplace your report and need a replacement. More importantly, this number also allows you to have a direct verification of the document via the gemological lab’s website.

Select options This product has multiple variants. The options may be chosen on the product page

Diamond Ring

$19.00$400.00

GIA Diamond Ring

Select options This product has multiple variants. The options may be chosen on the product page

Wire Wrapped Pendant

$19.00$400.00

Wire wrapping is one of the oldest techniques for making handmade jewelry. This technique is done with some jewelry wire and findings similar to wire (like head-pins) to make components. Wire components are then connected to one another using mechanical techniques with no soldering or heating of the wire. Frequently, in this approach, a wire is bent into a loop or other decorative shape and then the wire is wrapped around itself to finish the wire component making that loop or decorative shape permanent. Because of this technique for wrapping wire around itself, this craft is called wire wrapping.

Select options This product has multiple variants. The options may be chosen on the product page

Fancy White Diamond 1.08 Ct in Victorian Setting

$19.00$400.00

A chemically pure and structurally perfect diamond is perfectly transparent with no hue, or color. However, in reality almost no gem-sized natural diamonds are absolutely perfect. The color of a diamond may be affected by chemical impuritiesand/or structural defects in the crystal lattice. Depending on the hue and intensity of a diamond’s coloration, a diamond’s color can either detract from or enhance its value. For example, most white diamonds are discounted in price when more yellow hue is detectable, while intense pink diamonds or blue diamonds (such as the Hope Diamond) can be dramatically more valuable. Of all colored diamonds, red diamonds are the rarest. The Aurora Pyramid of Hope displays a spectacular array of naturally colored diamonds, including red diamonds.

When placed between two polarizing filters set at right angles to each other, the optical properties of the minerals in the thin section alter the colour and intensity of the light as seen by the viewer. As different minerals have different optical properties, most rock forming minerals can be easily identified. Plagioclase for example can be seen in the photo on the right as a clear mineral with multiple parallel twinning planes. The large blue-green minerals are clinopyroxene with some exsolution of orthopyroxene.

Thin sections are prepared in order to investigate the optical properties of the minerals in the rock. This work is a part of petrology and helps to reveal the origin and evolution of the parent rock.

A photograph of a rock in thin section is often referred to as a photomicrograph.

Select options This product has multiple variants. The options may be chosen on the product page

Fancy White Diamond 1.08 Ct in Victorian Setting

$19.00$400.00

A chemically pure and structurally perfect diamond is perfectly transparent with no hue, or color. However, in reality almost no gem-sized natural diamonds are absolutely perfect. The color of a diamond may be affected by chemical impuritiesand/or structural defects in the crystal lattice. Depending on the hue and intensity of a diamond’s coloration, a diamond’s color can either detract from or enhance its value. For example, most white diamonds are discounted in price when more yellow hue is detectable, while intense pink diamonds or blue diamonds (such as the Hope Diamond) can be dramatically more valuable. Of all colored diamonds, red diamonds are the rarest. The Aurora Pyramid of Hope displays a spectacular array of naturally colored diamonds, including red diamonds.

When placed between two polarizing filters set at right angles to each other, the optical properties of the minerals in the thin section alter the colour and intensity of the light as seen by the viewer. As different minerals have different optical properties, most rock forming minerals can be easily identified. Plagioclase for example can be seen in the photo on the right as a clear mineral with multiple parallel twinning planes. The large blue-green minerals are clinopyroxene with some exsolution of orthopyroxene.

Thin sections are prepared in order to investigate the optical properties of the minerals in the rock. This work is a part of petrology and helps to reveal the origin and evolution of the parent rock.

A photograph of a rock in thin section is often referred to as a photomicrograph.

Select options This product has multiple variants. The options may be chosen on the product page

Fancy White Diamond 1.08 Ct in Victorian Setting

$19.00$400.00

A chemically pure and structurally perfect diamond is perfectly transparent with no hue, or color. However, in reality almost no gem-sized natural diamonds are absolutely perfect. The color of a diamond may be affected by chemical impuritiesand/or structural defects in the crystal lattice. Depending on the hue and intensity of a diamond’s coloration, a diamond’s color can either detract from or enhance its value. For example, most white diamonds are discounted in price when more yellow hue is detectable, while intense pink diamonds or blue diamonds (such as the Hope Diamond) can be dramatically more valuable. Of all colored diamonds, red diamonds are the rarest. The Aurora Pyramid of Hope displays a spectacular array of naturally colored diamonds, including red diamonds.

When placed between two polarizing filters set at right angles to each other, the optical properties of the minerals in the thin section alter the colour and intensity of the light as seen by the viewer. As different minerals have different optical properties, most rock forming minerals can be easily identified. Plagioclase for example can be seen in the photo on the right as a clear mineral with multiple parallel twinning planes. The large blue-green minerals are clinopyroxene with some exsolution of orthopyroxene.

Thin sections are prepared in order to investigate the optical properties of the minerals in the rock. This work is a part of petrology and helps to reveal the origin and evolution of the parent rock.

A photograph of a rock in thin section is often referred to as a photomicrograph.