Showing all 15 results

Slide of Burnt Clay

$19.00$400.00

Clay is a finely-grained natural rock or soil material that combines one or more clay minerals with traces of metal oxides and organic matter. Geologic clay deposits are mostly composed of phyllosilicate minerals containing variable amounts of water trapped in the mineral structure. Clays are plastic due to their water content and become hard, brittle and non–plastic upon drying or firing.[1][2][3] Depending on the soil’s content in which it is found, clay can appear in various colours from white to dull grey or brown to deep orange-red.

Hard Candy

$19.00$400.00

A hard candy, or boiled sweet, is a sugar candy prepared from one or more sugar-based syrups that is boiled to a temperature of 160 °C (320 °F) to make candy. Among the many hard candy varieties are stick candy (such as the candy cane), lollipops, aniseed twists, and bêtises de Cambrai.

Hard candy is nearly 100% sugar by weight; Recipes for hard candy may use syrups of sucrose, glucose, fructose or other sugars. Sugar-free versions have also been created.

Carbon Fiber 50x

$19.00$400.00

Carbon fiber reinforced polymer, carbon fiber reinforced plastic or carbon fiber reinforced thermoplastic (CFRP, CRP, CFRTP or often simply carbon fiber, carbon composite or even carbon), is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The spelling ‘fibre’ is common in British Commonwealth countries. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as aerospace, automotive, civil engineering, sports goods and an increasing number of other consumer and technical applications.

The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester or nylon, are sometimes used. The composite may contain other fibers, such as an aramid (e.g. Kevlar, Twaron), aluminium, ultra-high-molecular-weight polyethylene (UHMWPE) or glass fibers, as well as carbon fiber. The properties of the final CFRP product can also be affected by the type of additives introduced to the binding matrix (the resin). The most frequent additive is silica, but other additives such as rubber and carbon nanotubes can be used. The material is also referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer).

Carbon Fiber 50x

$19.00$400.00

Carbon fiber reinforced polymer, carbon fiber reinforced plastic or carbon fiber reinforced thermoplastic (CFRP, CRP, CFRTP or often simply carbon fiber, carbon composite or even carbon), is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The spelling ‘fibre’ is common in British Commonwealth countries. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as aerospace, automotive, civil engineering, sports goods and an increasing number of other consumer and technical applications.

The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester or nylon, are sometimes used. The composite may contain other fibers, such as an aramid (e.g. Kevlar, Twaron), aluminium, ultra-high-molecular-weight polyethylene (UHMWPE) or glass fibers, as well as carbon fiber. The properties of the final CFRP product can also be affected by the type of additives introduced to the binding matrix (the resin). The most frequent additive is silica, but other additives such as rubber and carbon nanotubes can be used. The material is also referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer).

Carbon Fiber

$19.00$400.00

Carbon fiber reinforced polymer, carbon fiber reinforced plastic or carbon fiber reinforced thermoplastic (CFRP, CRP, CFRTP or often simply carbon fiber, carbon composite or even carbon), is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The spelling ‘fibre’ is common in British Commonwealth countries. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as aerospace, automotive, civil engineering, sports goods and an increasing number of other consumer and technical applications.

The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester or nylon, are sometimes used. The composite may contain other fibers, such as an aramid (e.g. Kevlar, Twaron), aluminium, ultra-high-molecular-weight polyethylene (UHMWPE) or glass fibers, as well as carbon fiber. The properties of the final CFRP product can also be affected by the type of additives introduced to the binding matrix (the resin). The most frequent additive is silica, but other additives such as rubber and carbon nanotubes can be used. The material is also referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer).

Carbon Fiber

$19.00$400.00

Carbon fiber reinforced polymer, carbon fiber reinforced plastic or carbon fiber reinforced thermoplastic (CFRP, CRP, CFRTP or often simply carbon fiber, carbon composite or even carbon), is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The spelling ‘fibre’ is common in British Commonwealth countries. CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as aerospace, automotive, civil engineering, sports goods and an increasing number of other consumer and technical applications.

The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester or nylon, are sometimes used. The composite may contain other fibers, such as an aramid (e.g. Kevlar, Twaron), aluminium, ultra-high-molecular-weight polyethylene (UHMWPE) or glass fibers, as well as carbon fiber. The properties of the final CFRP product can also be affected by the type of additives introduced to the binding matrix (the resin). The most frequent additive is silica, but other additives such as rubber and carbon nanotubes can be used. The material is also referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer).

GIA Laser Report Number

$19.00$400.00

1. Header of the Report – Who Actually Graded the Diamond?

The first detail to look for is the name of the issuing laboratory. The more well-known labs are GIA, AGS, EGL, IGI, and HRD but there are also plenty of other “specialty services” who issue reports too.

The more important question here is who uses these specialty services and why? You might have encountered the notoriously “cheap” diamond deals that come with obscure grading reports from “independent” appraisers or in-house gemologists.

The truth is, there are no deals here. These “cheap” diamonds are usually what they are; low quality diamonds that aren’t worth the fees of sending it to a proper lab for grading. Instead, unethical jewelers bank on the lax grading standards of “independent” appraisals and biased in-house reports to make low quality diamonds sound better on paper.

The bottom line is that you should only consider buying diamonds graded by GIA or AGS. The other labs have lenient standards and often over-grade diamonds for the benefit of the jeweler. For more information, you can refer to our article on the differences between gemological labs.

2. Report Number, Cutting Style And Measurements

The next detail you would notice is the report number, which is a unique series of digits for record keeping purposes. Most labs retain this number in their database in case you misplace your report and need a replacement. More importantly, this number also allows you to have a direct verification of the document via the gemological lab’s website.

GIA Laser Report Number

$19.00$400.00

1. Header of the Report – Who Actually Graded the Diamond?

The first detail to look for is the name of the issuing laboratory. The more well-known labs are GIA, AGS, EGL, IGI, and HRD but there are also plenty of other “specialty services” who issue reports too.

The more important question here is who uses these specialty services and why? You might have encountered the notoriously “cheap” diamond deals that come with obscure grading reports from “independent” appraisers or in-house gemologists.

The truth is, there are no deals here. These “cheap” diamonds are usually what they are; low quality diamonds that aren’t worth the fees of sending it to a proper lab for grading. Instead, unethical jewelers bank on the lax grading standards of “independent” appraisals and biased in-house reports to make low quality diamonds sound better on paper.

The bottom line is that you should only consider buying diamonds graded by GIA or AGS. The other labs have lenient standards and often over-grade diamonds for the benefit of the jeweler. For more information, you can refer to our article on the differences between gemological labs.

2. Report Number, Cutting Style And Measurements

The next detail you would notice is the report number, which is a unique series of digits for record keeping purposes. Most labs retain this number in their database in case you misplace your report and need a replacement. More importantly, this number also allows you to have a direct verification of the document via the gemological lab’s website.